

صورتجلسه شورای پژوهشی دانشگاه

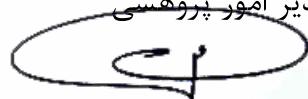
با نام و یاد خدای متعال جلسه شورای پژوهشی ۱۳۹۷/۱ در تاریخ ۹۷/۲/۱۶ ساعت ۱۰ صبح در محل اتاق شورا برگزار و موارد ذیل بررسی و نتایج به شرح ذیل اتخاذ گردید:

۱- اعطای پایه تشویقی برای اعضای هیات علمی که حداقل امتیاز لازم برای پایه تشویقی را کسب کرده اند، منوط به ممیزی مجدد در کمیته ترقیات بر طبق آیین نامه ارتقا دارد.

۲- همکارانی که دارای مقاله چاپ شده در مجلات علوم انسانی هستند، می توانند از ماده ۵ آیین نامه ترقیات امنا مربوط به رشته های علوم انسانی استفاده کنند. برای همکاران غیر از رشته های علوم انسانی اخذ ترقی منوط به ارائه مقالات مرتبط با رشته نیز می باشد.

شماره پیگیری
۲۴۴۴۰۵

۳- درخواست جناب آقای دکتر رضوی جهت شرکت در "بیست و ششمین کنفرانس مهندسی برق" همراه با ارائه مقاله مصوب شورای پژوهشی دانشکده علوم پایه و مهندسی به شماره ۹۷/۱۷۲۶/س که در تاریخ ۱۸ الی ۲۰ اردیبهشت ماه ۱۳۹۷ در دانشگاه صنعتی سجاد مشهد برگزار می شود، مورد موافقت قرار گرفت. شایان ذکر است که هزینه های شرکت در همایش ایشان از محل گرفت قابل پرداخت است.


۴- چنانچه عضو هیات علمی بر اساس بند ۶-۲ آیین نامه ارتقا پس از احراز شرایط و اخذ پایه ترقیع سالیانه، ادعای امتیاز پژوهشی افزون بر امتیاز مکتسبه را داشته باشد، بایستی اثر پس از ارزیابی مجدد در جلسه گروه، دانشکده و شورای پژوهشی دانشگاه در مراجع ذی صلاح از جمله وزارت علوم یا فرهنگستان ادب و هنر یا سازمان میراث فرهنگی یا وزارت فرهنگ و ارشاد اسلامی مورد داوری قرار گیرد. در صورت تایید امتیاز مزاد در دانشکده امتیاز مزاد، در امتیاز ذخیره ترقیع لحاظ خواهد شد.

۵- مقرر گشت در محاسبه گرفت سال ۹۷ امتیاز مربوط به تشویقی روحیه جمع گرایی به اعضای هیات علمی صورتجلسه مورخ ۹۵/۱۲/۲۲ س مورخ ۹۵/۱۳۱۹۵ نشود.

اعضای محترم حاضر در جلسه:

شماره پیگیری
۲۴۴۴۰۵

دکتر مهدیه قاسمی
مدیر امور پژوهشی

بهزاد حقیقی
معاون آموزشی و پژوهشی

دکتر حسن نامی
رئیس دانشکده ادبیات و علوم انسانی

مژگان افخمی گلی
رئیس دانشکده علوم پایه

دکتر احسان صابریان
مدیر دفتر نظارت، ارزیابی و تضمین کیفیت

دکتر سیده‌هاشم حسینی
رئیس دانشکده هنر

دکتر حسن باصفا
عضو هیات علمی گروه آموزشی مهندس‌忿ورهیات علمی گروه امور پژوهشی باستان شناسی

دکتر علیرضا روحانی منش

Investigation of AlGaN/GaN HEMT electrical characteristics with recessed insulator and barrier at both source and drain sides

Seyed Mohammad Razavi^{1*}, Seyed Hamid Zahiri^{**}, Amir Nejati^{***}

¹Department of Electrical Engineering, University of Neyshabur, Neyshabur, Iran

^{**}Faculty of Engineering, University of Birjand, Birjand, Iran

^{***}Faculty of Engineering, Islamic Azad University, Neyshabur Branch, Neyshabur, Iran

Abstract— in this work, we investigate electrical characteristics of a novel gallium-nitride (GaN) based high electron mobility transistor (HEMT) that its insulator layer is recessed into the barrier and its barrier layer is recessed to the buffer layer at both source and drain sides. The recessed region of the insulator layer has the same length and thickness compared to those of the recessed region of the barrier layer. We investigate main device electrical parameters for instance drain current, threshold voltage, maximum output power density, DC trans-conductance, gate capacitance and cut off frequency (f_T) by means of two dimensional ATLAS software. According to the Simulation results, insulator and barrier recess in the simulated structure improves drain current, maximum DC trans-conductance (g_m), cut off frequency and maximum output power density compared to the conventional transistor. The investigated device has less gate capacitance than that in the conventional one. Also, the proposed structure has a negative shift in the threshold voltage.

Keywords- *GaN HEMT; Drain Current; Output Power Density; DC Trans-Conductance; Gate Capacitance*

I. INTRODUCTION

The In the last decade, gallium nitride (GaN) semiconductors and their alloys (AlGaN, InGaN) have emerged as the most promising materials in a wide range of applications. AlGaN/GaN high electron mobility transistors (HEMTs) can be applied in high-power and high-frequency purposes, extensively. Because, these devices have excellent material properties such as large band gap, high saturated electron velocity, high breakdown electric field, strong spontaneous and piezoelectric polarization fields, and good radiation protection. AlGaN/GaN HEMTs application in high power and high frequency circuits is more than AlGaAs/GaAs based HEMTs due to its superior material characteristics [1-7]. We can change transistor Structure to enhance its electrical characteristics. For instance, gate or channel recess in MESFETs enhances their electrical features [8-10]. This induces that recessed insulator and barrier may improve the HEMT characteristics. In this research, we simulate the electrical features in a HEMT structure with recessed insulator and barrier at both source and drain sides. The recess length and width of insulator to the barrier layer are equal to those of barrier layer into the buffer. We investigate some electrical parameters such as drain current, threshold voltage, maximum output power density, maximum DC trans-conductance, gate

capacitance and cut off frequency of the proposed structure and compare to those in the conventional structure by means of ATLAS simulator.

In section II, we clarify device structure in the new and conventional transistors and the models applied in the simulator. In section III, recessed insulator and barrier impact on the drain current, threshold voltage, g_m , gate capacitance and cut off frequency of the proposed and conventional devices are simulated and compared in details.

II. DEVICE STRUCTURES

Device structure of the conventional [3] and proposed transistors are exposed in figures 1(a) and (b), respectively. The dimensions of these two transistors are as follows: gate length is $L_g=0.5\text{ }\mu\text{m}$, gate to drain distance is $L_{gd}=1\text{ }\mu\text{m}$, gate to source distance is $L_{gs}=1\text{ }\mu\text{m}$. The width of barrier and buffer layers are $T_B=22\text{ nm}$ and $T_C=1.5\text{ }\mu\text{m}$, correspondingly. The insulator layer used in these transistors is Si_3N_4 that its electrical parameters are declared in [12]. An $\text{Al}_{0.32}\text{Ga}_{0.68}\text{N}$ (n-type) is applied for barrier layer that is doped heavily. An inherent Ga-N is used in the buffer region. The recessed insulator length ($W_2=0.2\mu\text{m}$) and thickness ($S=11\text{ nm}$) is equal to the recessed barrier length ($W_1=0.2\mu\text{m}$) and thickness ($P=11\text{ nm}$) at both source and drain sides. Hence, to get an accurate judgment, the average barrier width of the investigated transistor is alike to that in the conventional. Also, in the proposed structure, $D_1=D_2=1.4\mu\text{m}$ and $R=0.3\mu\text{m}$. The schottky gate contact is nickel that its work function is 5.1eV. These two transistors are simulated and compared by means of ATLAS device simulator [13]. To get further accurate results, some models are activated in simulations, for example, the ‘SRH’ model for Shockley–Read–Hall recombination, the ‘fldmob’ model for parallel electric field-dependent mobility [8], [14] and the ‘bgn’ model for band gap narrowing.

The conventional device can be fabricated according to the procedure in [15]. The substrate and GaN (buffer) of the investigated transistor can be built by means of metal-organic chemical vapor deposition (MOCVD) [15]. Barrier recess region into the buffer layer can be generated by ion implantation process. To decrease the ion implantation process degradation, post annealing is necessary. Insulator recess region into the barrier can be formed by means of patterning recess location with PR in the barrier and sputtering the

بیست و ششمین کنفرانس مهندسی برق ایران

۱۸ اردیبهشت ۱۳۹۷

Iranian Conference on Electrical Engineering
8-10 May 2018

دانشگاه صنعتی شهروند

صندوق پیام ها

پیغامی موجود نیست

- صندوق ورودی
- پیغام جدید

تاریخ های مهم

مقالات

مولت ارسال مقالات کامل: ۱۷ آذر ۹۶

پژوهش

۹ دی ۹۶

نکته مهم

مولت ارسال مقالات منحنی: ۲۹ دی ۹۶

۹۶

اعلام نتایج داوری: ۱۸ اسفند ۹۶

ارسال نسخه نهایی مقالات: ۱۹ خرداد ۹۷

نام کاربری: razavi کد شناسه: 135

لیست برداختها

واریز وجه

پیگیری مقاله

ارسال مقاله

پیگیری مقالات

برای دیدن عملیات مجاز مقاله، روی آیکون کلیک کنید

لیست مقالات ارسال شده

ردیف	کد مقاله	عنوان مقاله	تاریخ ارسال	فایل مرتبط	فایل ارائه	فایل خلاصه مقاله (آخرین نسخه)	وضعیت	نحوه داوری
1	14	Investigation of AlGaN/GaN HEMT electrical characteristics with recessed insulator and barrier at both source and drain sides	سهشنبه ۲۳ آبان ۱۳۹۶ - ۱۰:۲۴				پذیرش شفاهی	

سالنامه ۲۶ کنفرانس مهندسی برق ایران

دانشگاه صنعتی سجاد

26th

Iranian Conference on Electrical Engineering
(ICEE)

تمدید مهلت ارسال
تا ۲۵ دی ۱۳۹۶

آخرین مهلت ارسال مقالات
۱۷ آذر ۱۳۹۶

2018

Sadjad University of Technology
دانشگاه صنعتی سجاد

8-10 May 2018

محورهای کنفرانس

مشهد ۱۸ تا ۲۰ اردیبهشت ۱۳۹۷

الکترونیک، قدرت، کنترل، مخابرات، کامپیوتر، مهندسی پزشکی، صنعت و اقتصاد برق

مشهد، جلال آل احمد ۶۴، کد پستی: ۹۱۸۸۱-۴۸۸۴۸

تلفن دانشگاه: ۰۵۱-۳۶۰۲۹۰۰۰ تلفن دبیرخانه: ۰۵۱-۳۶۰۲۹۲۰۵

پست الکترونیکی: icee2018@sadjad.ac.ir | وب سایت: <http://icee2018.sadjad.ac.ir> | کانال تلگرام: <https://t.me/icee2018>

شرکت اوزیع بروزی برق
استان خراسان رضوی سمن